11、在Matlab中利用逆矩阵可以解方程组,如方程组AX=b可用X=inv(A)*b解出X,也可用X=A\b求解得X;X=A\b除了可以求只有唯一解的方程组,还可以求解矛盾方程组,如进行函数拟合的时候解的就是一个矛盾方程组.

题目

11、在Matlab中利用逆矩阵可以解方程组,如方程组AX=b可用X=inv(A)*b解出X,也可用X=A\b求解得X;X=A\b除了可以求只有唯一解的方程组,还可以求解矛盾方程组,如进行函数拟合的时候解的就是一个矛盾方程组.


相似考题
更多“11、在Matlab中利用逆矩阵可以解方程组,如方程组AX=b可用X=inv(A)*b解出X,也可用X=A\b求解得X;X=A\b除了可以求只有唯一解的方程组,还可以求解矛盾方程组,如进行函数拟合的时候解的就是一个矛盾方程组.”相关问题
  • 第1题:

    非齐次线性方程组Ax=b中未知量个数为n,方程个数为m,系数矩阵A的秩为r,则

    A.r=m时,方程组A-6有解.
    B.r=n时,方程组Ax=b有唯一解.
    C.m=n时,方程组Ax=b有唯一解.
    D.r

    答案:A
    解析:
    因为A是m×n矩阵,若秩r(A)=m,则m=r(A)≤r(A,b)≤m.于是r(A)=r(A,b).故方程组有解,即应选(A).或,由r(A)=m,知A的行向量组线性无关,那么其延伸必线性无关,故增广矩阵(A,b)的m个行向量也是线性无关的,亦知r(A)=r(A,b).关于(B)、(D)不正确的原因是:由r(A)=n不能推导出r(A,b)=n(注意A是m×n矩阵,m可能大于n),由r(A)=r亦不能推导出r(A,b)=r,你能否各举一个简单的例子?至于(C),由克拉默法则,r(A)=n时才有唯一解,而现在的条件是r(A)=r,因此(C)不正确,

  • 第2题:

    非齐线性方程组AX=b中未知量的个数为n,方程的个数为m,系数矩阵A的秩为r,则( )。

    A 当r=m时,方程组AX=b有解
    B 当r=n时,方程组AX=b有惟一解
    C 当m=n时,方程组AX=b有惟一解
    D 当r<n时,方程组AX=b有无穷多解

    答案:A
    解析:
    系数矩阵A是m×n矩阵,增个矩阵B是m×(n+1)矩阵当R(A)=r=m时,由于R(B)≥R(A)=m,而B仅有m行,故有R(B)≤m,从而R(B)=m,即R(A)=R(B),方程组有解

  • 第3题:

    设η为非零向量,A=,η为方程组AX=O的解,则a=_______,方程组的通解为_______.


    答案:1、3 2、k(-3 3、1 4、2)^T
    解析:

  • 第4题:

    讨论方程组的解的情况,在方程组有解时求出其解,其中a,b为常数.


    答案:
    解析:

  • 第5题:

    已知下列非齐次线性方程组(Ⅰ),(Ⅱ)
      
      (1)求解方程组(Ⅰ),用其导出组的基础解系表示通解.
      (2)当方程组中的参数m,n,t为何值时,方程组(Ⅰ)与(Ⅱ)同解.


    答案:
    解析:

  • 第6题:

    取何值时,方程组有唯一解,并求解。


    答案:
    解析:

  • 第7题:

    设,.
      已知线性方程组Ax=b存在2个不同的解.
      (Ⅰ)求λ,a;
      (Ⅱ)求方程组Ax=b的通解.


    答案:
    解析:
    【解】(Ⅰ)因为方程组Ax=b有2个不同的解,所以r(A)=r(A)
    知λ=1或λ=-1
    当λ=1时

    显然r(A)=1,r(=2,此时方程组无解,λ=1舍去.
    当λ=-1时,对Ax=b的增广矩阵施以初等行变换:

    因为Ax=b有解,所以a=-2.
    (Ⅱ)当λ=-1,a=-2时,

    所以Ax=b的通解为
    ,其中k为任意常数

  • 第8题:

    采用对流换热边界层微分方程组、积分方程组或雷诺类比法求解,对流换热过程中,正确的说法是(  )。

    A. 微分方程组的解是精确解
    B. 积分方程组的解是精确解
    C. 雷诺类比的解是精确解
    D. 以上三种均为近似解

    答案:A
    解析:
    对流换热的求解方法包括分析法、类比法和实验法。分析法包括微分方程组求解和积分方程组求解。在所有方法中,只有微分方程组的解是精确解;积分方程组的求解要先假设速度和温度的分布,因此是近似解;雷诺类比的解是由比拟理论求得的,也是近似解。

  • 第9题:

    设P是3x3矩阵,其秩为2,考虑方程组
    (1)设的两个解C1、C2为实数,证明也是PX=0的解;(4分)
    (2)方程组PX=0的解空间的维数是多少 (无需证明)(3分)


    答案:
    解析:
    (2)方程组PX=0的解空间的维数是未知量的个数n=3减去系数矩阵P的秩2,即为1。

  • 第10题:

    单选题
    采用对流换热边界层微分方程组,积分方程组或雷诺类比法求解对流换热过程中,正确的说法是(  )。[2010年真题]
    A

    微分方程组的解是精确解

    B

    积分方程组的解是精确解

    C

    雷诺类比的解是精确解

    D

    以上三种均为近似值


    正确答案: A
    解析:
    对流换热的求解方法包括分析法、类比法和实验法。分析法包括微分方程组求解和积分方程组求解。在所有方法中,只有微分方程组的解是精确解;积分方程组的求解要先假设速度和温度的分布,因此是近似解;雷诺类比的解是由比拟理论求得的,也是近似解。

  • 第11题:

    单选题
    采用对流换热边界层微分方程组,积分方程组或雷诺类比法求解对流换热过程中,正确的说法是(  )。
    A

    微分方程组的解是精确解

    B

    积分方程组的解是精确解

    C

    雷诺类比的解是精确解

    D

    以上三种均为近似值


    正确答案: D
    解析:

  • 第12题:

    单选题
    非齐次线性方程组AX(→)=b(→)中未知数个数为n,方程个数为m,系数矩阵A的秩为r,则(  )。
    A

    r=m时,方程组AX()b()有解

    B

    r=n时,方程组AX()b()有唯一解

    C

    m=n时,方程组AX()b()有唯一解

    D

    r<n时,方程组AX()b()有无穷多解


    正确答案: A
    解析:
    A项,由于r=m,则方程组AX()b()的增广矩阵化为阶梯形矩阵时,阶梯形矩阵不为0的行数为m,r(A)=r(A(_))=m,所以AX()b()有解;
    B项,当r=n时,可知n≤m,当n<m时,则方程组AX()b()不一定只有唯一解;
    C项,当m=n时,r(A(_))不一定等于r,方程组不一定有解;
    D项,当r<n时,不能保证r(A)=r(A(_))=r,方程组AX()b()不一定有解。

  • 第13题:

    设A是m×n阶矩阵,下列命题正确的是().

    A.若方程组AX=0只有零解,则方程组AX=b有唯一解
    B.若方程组AX=0有非零解,则方程组AX=b有无穷多个解
    C.若方程组AX=b无解,则方程组AX=0一定有非零解
    D.若方程组AX=b有无穷多个解,则方程组AX=0一定有非零解

    答案:D
    解析:

  • 第14题:

    都是线性方程组Ax=0的解,则矩阵A为:


    答案:D
    解析:
    提示:a1,a2是方程组Ax=0的两个线性无关的解,方程组含有3个未知量,故矩阵A的秩R(A)=3-2=1,而选项A、B、C的秩分别为3、2、2均不符合要求。将选项D代入方程组_

  • 第15题:

    设有方程组,证明此方程组有唯一解的充分必要条件为a,b,c两两不等,在此情况求解


    答案:
    解析:

  • 第16题:

    已知方程组(I)(II)图1} (1)a,b取什么值时这两个方程组同解?此时求解. (2)a,b取什么值时这两个方程组有公共解? 此时求公共解{


    答案:
    解析:

  • 第17题:

    利用逆矩阵,解线性方程组


    答案:
    解析:

  • 第18题:

    利用逆阵解线性方程组:


    答案:
    解析:

  • 第19题:

    设n元线性方程组Ax=b,其中
      .
      (Ⅰ)证明行列式|A|=(n+1)a^n;
      (Ⅱ)当a为何值时,该方程组有唯一解,并求x1;
      (Ⅲ)当a为何值时,该方程组有无穷多解,并求通解.


    答案:
    解析:



  • 第20题:

    已知齐次线性方程组(1)方程组仅有零解;(2)方程组有非零解,在有非零解时,求此方程组的一个基础解系.


    答案:
    解析:

  • 第21题:

    非齐次线性方程组AX=b中未知数个数为n,方程个数为m,系数矩阵A的秩为r,则( ).

    A.r=m时,方程组AX=b有解
    B.r=n时,方程组AX=b有唯一解
    C.m=m时,方程组AX=b有唯一解
    D.r<n时,方程组AX=b有无穷多解

    答案:A
    解析:

  • 第22题:

    问答题
    设AX=0与BX=0均为n元齐次线性方程组,秩r(A)=r(B),且方程组AX=0的解均为方程组BX=0的解,证明方程组AX=0与BX=0同解.

    正确答案:
    设r(A)=r(B)=r,方程组AX=0的基础解系为①:ζ12,…,ζn-r,方程组BX=0的基础解系为②:η12,…,ηn-r.
    构造向量组③:ζ12,…,ζn-r12,…,ηn-r.
    由向量组①可由②线性表示,则向量组②和③等价,从而r(③)=n-r,所以ζ12,…,ζn-r是向量组③的极大线性无关组,有η12,…,ηn-r可由ζ12,…,ζn-r线性表示,即BX=0的任一解都可由ζ12,…,ζn-r线性表示,故BX=0的解都是AX=0的解,所以方程组AX=0与BX=0同解.
    解析: 暂无解析

  • 第23题:

    单选题
    n阶矩阵A的伴随矩阵为A*,齐次线性方程组AX(→)=0(→)有两个线性无关的解,则(  )。
    A

    A*X()0()的解均是AX()0()的解

    B

    AX()0()的解均是A*X()0()的解

    C

    AX()0()与A*X()0()无非零公共解

    D

    AX()0()与A*X()0()仅有2个非零公共解


    正确答案: A
    解析:
    由齐次方程组AX()0()有两个线性无关的解向量,知方程组AX()0()的基础解系所含解向量的个数为n-r(A)≥2,即r(A)≤n-2<n-1。由矩阵A与其伴随矩阵秩的关系,知r(A*)=0,即A*=0。所以任意n维列向量均是方程组A*X()0()的解,故方程组AX()0()的解均是A*X()0()的解。

  • 第24题:

    问答题
    设A为m×n矩阵(n<m),且AX=b有唯一解,证明:矩阵ATA为可逆矩阵,且方程组AX(→)=b(→)的解为X(→)=(ATA)-1ATb(→)(AT为A的转置矩阵)。

    正确答案:
    由AX()=b()有唯一解知r(A)=r(A┆b())=n,因此AX()=0()只有零解。
    若r(ATA)TAX()=0()有非零解,即存在X()0≠0使ATAX()0=0()。所以有X()0TATAX()0=(AX()0)TAX()0=0(),即AX()0=0()。于是方程组AX()=0()有非零解,这与AX()=0()只有零解矛盾,故r(ATA)=n,即ATA可逆。
    由AX()=b()得,ATAX()=ATb(),有X()=(ATA)-1ATb()。如果η()1,η()2,…,η()t是线性方程组AX()=b()的解,则u1η()1+u2η()2+…+utη()t也是AX()=b()的一个解。其中u1+u2+…+ut=1。
    因为η()1,η()2,…,η()t是AX()=b()的解,所以η()2-η()1,η()3-η()1,…,η()t-η()1是AX()=0()的解。
    由u1+u2+…+ut=1,得u1=1-u2-u3…-ut,所以有u1η()1+u2η()2+…+utη()t=(1-u2-u3-…-ut)η()1+u2η()2+…+utη()t=η()1+u2(η()2-η()1)+u3(η()3-η()1)+…+ut(η()t-η()1),即u1η()1+u2η()2+…+utη()t也是AX()=b()的解。
    解析: 暂无解析